J-0
00m
00j
00h
00min
00s

Version interactive avec LaTeX compilé

Centrale Physique 1 TSI 2004

Notez ce sujet en cliquant sur l'étoile
0.0(0 votes)
Logo centrale
2025_09_04_85ad9e0574b9be087d19g

PHYSIQUE I

Les quatre parties de ce problème sont partiellement indépendantes. Les parties III et IV ne requièrent aucune connaissance de physique atomique ou de physique nucléaire. Dans ces parties, le poids des particules élémentaires est évidemment négligé.
Données :
Charge de l'électron (module) :
Masse de l'électron :
Masse du proton :
Masse de l'atome d'argent:
Constante de Planck:
On pose
( ) désignent les vecteurs unitaires d'un repère orthonormé direct ( ) lié à un référentiel galiléen.

Partie I - Dipôle magnétique : définitions et propriétés fondamentales

On considère une spire de forme rectangulaire ( , parcourue par un courant continu I (figure 1). Cette spire est placée dans un champ magnétique constant et uniforme .

I.A - Déterminer soigneusement les forces (où ) exercées par le champ sur chaque côté de la spire (voir figure 1). En déduire la force magnétique résultante sur la boucle.
I.B - Vérifier que le système des forces exercées par le champ magnétique est un couple. Déterminer les moments (où ) par rapport au centre du rectangle, des actions exercées par le champ sur chaque côté de la spire (on pourra calculer les composantes de ces vecteurs sur ) et en

Filière TSI

déduire que le moment résultant peut se mettre sous la forme . Exprimer le moment magnétique de la boucle en fonction de la surface de celle-ci, de l'intensité et du vecteur unitaire perpendiculaire au plan de la boucle.
I.C - Application numérique : on donne . Calculer et .
I.D - On suppose que la spire peut tourner librement autour de l'axe , la position de la spire étant caractérisée par l'angle entre le champ et le moment magnétique . Pour quelle valeur de la boucle est-elle en équilibre stable ? en équilibre instable ? Justifier brièvement les réponses.
I.E - On suppose qu'à partir de l'angle , la spire subit une rotation infinitésimale . Exprimer le travail du couple magnétique durant ce déplacement; déterminer le travail correspondant à une rotation finie entre et . En déduire l'existence d'une énergie potentielle .
I.F - Application numérique : la spire effectue une rotation depuis la position jusqu'à la position . Quelle est la variation de son énergie potentielle?

On admettra que :

  • l'expression du moment est valable pour la boucle parcourue par un courant variable dans le temps et placée dans un champ magnétique variable dans le temps de la partie II.
  • Les expressions du moment et de l'énergie sont valables pour les dipôles magnétiques atomiques et nucléaires placés dans un champ magnétique même non uniforme des parties III et IV.

Partie II - Action d'un champ tournant sur un circuit fermé. Principe du moteur asynchrone

Une petite bobine plate, de centre , formée de spires de section , fermée sur elle même, d'inductance propre et de résistance tourne à la vitesse constante autour de l'axe ; sa position est repérée par l'angle entre et le vecteur unitaire normal au plan de la bobine : ( désignant une constante positive).
Cette bobine est plongée dans un champ magnétique , de norme constante, «tournant» lui aussi autour de l'axe à la vitesse angulaire constante: (figure 2).
II.A - Déterminer la valeur, à l'instant , de
Figure 2: et sont constamment dans le plan
l'angle en fonction de et . En déduire le flux du champ à travers la bobine. Quelle est la force électromotrice induite correspondante?
II.B - En régime établi, cette force électromotrice engendre dans le circuit ( ) un courant sinusoïdal de même pulsation que que l'on exprimera sous la forme . Déterminer et .
II.C - À quel couple le circuit est-il soumis? Quelle est la valeur moyenne de ? À quelle condition ce couple est-il moteur?
II.D - On se propose d'étudier la variation du couple moyen en fonction de la vitesse angulaire .
II.D.1) Vérifier qu'il est possible d'écrire sous la forme :
II.D.2) Pour quelle valeur de la quantité est-elle minimale ?
II.D.3) Soit la valeur de la pulsation qui donne le maximum de , soit . Exprimer et vérifier que ce couple moyen maximal est indépendant de la résistance .
II.D.4) Donner l'allure de la courbe pour tout le domaine de variation de (y compris les valeurs négatives). On désignera les extrema par les points et .
II.D.5) Interpréter les branches , puis et . Justifier le terme de «moteur asynchrone» de ce dispositif.
II.E - On suppose que le moteur ait à vaincre un couple résistant de norme constante , produit par les machines qu'il doit entraîner et par les frottements.
II.E.1) Le cadre, primitivement au repos ( ), est soumis au couple moyen .
a) Exprimer .
b) Que se passe-t-il si ?
c) À partir de la comparaison des graphe et (on appelle le point d'intersection entre les deux graphes), préciser qualitativement l'évolution du mouvement du cadre. Caractériser le régime atteint par le moteur.
II.E.2) On «charge» davantage le moteur, en maintenant la condition . Comment évolue le point figuratif ?
II.E.3) Quelle est sur le graphique la zone de fonctionnement stable ? Justifier la réponse.
II.E.4) Pour la charge maximale acceptable, soit , calculer la différence relative .
II.E.5) Quel est l'intérêt de la résistance au démarrage ? Quel est son intérêt au maximum de charge ?

Partie III - Moment magnétique d'un électron, d'un atome

III.A - Dans un atome, on assimile un électron à une particule ponctuelle (de masse et de charge ) décrivant une trajectoire fermée autour du noyau. Cet électron en mouvement est équivalent à un petit dipôle magnétique de moment magnétique que l'on se propose de calculer. L'électron est soumis de la part du noyau à une force centrale.
III.A.1) Montrer que la trajectoire de l'électron est plane. On désigne par le moment cinétique de l'électron ( vecteur unitaire de même sens que .
III.A.2) Exprimer l'aire balayée par l'électron en fonction de la masse , de et de l'intervalle de temps correspondant.
III.A.3) En déduire l'aire totale balayée par l'électron sur un tour en fonction de et de la période de révolution, puis en fonction de et la fréquence correspondante.
III.A.4) Quelle est l'intensité électrique équivalente à ce mouvement «orbital» de l'électron ? Exprimer en fonction de et .
III.A.5) En déduire le moment magnétique de ce dipôle. Exprimer alors le rapport gyromagnétique de l'électron défini par en fonction de et .
III.A.6) Application numérique : on suppose réalisée la condition pour un électron dont la trajectoire est circulaire de rayon .
Déterminer le courant et le moment dipolaire magnétique correspondant.
III.B - En plus de son moment cinétique (encore appelé moment cinétique orbital), l'électron possède un moment cinétique interne dit de «rotation propre» appelé spin et à ce spin correspond un moment magnétique
on admettra que, dans un champ magnétique orienté suivant l'axe , la mesure algébrique suivant de ne peut prendre que deux valeurs, .
III.B.1) On désigne par l'intensité du champ magnétique subi par l'électron atomique de l'atome d'hydrogène. En 1951, les radioastronomes d'Harvard ont observé une radiation de longueur d'onde due à l'émission d'un photon par un atome d'hydrogène galactique dont l'électron voit son spin passer de l'état à l'état sous l'action du champ créé par le moment magnétique du proton. Exprimer en fonction des constantes fondamentales et de les énergies potentielles correspondant respectivement à .
III.B.2) À quelle variation d'énergie correspond un «renversement» de spin?
III.B.3) Application numérique : déterminer le champ «perçu» par l'électron de l'atome d'hydrogène. On rappelle que l'énergie d'un photon de fréquence est égale à et que la vitesse de la lumière dans le vide vaut .
III.C - La figure 3 représente une expérience historique, la première qui ait mis en évidence le spin de l'électron atomique (expérience de Stern et Gerlach). Un faisceau atomique d'argent, rendu monochromatique, se propage dans le vide, dans la direction de l'axe à la vitesse . Ce jet initial a

une largeur de . Il traverse sur une longueur un aimant dont les pièces polaires ont été taillées de manière à produire un champ magnétique dont le gradient est constant et élevé : on prendra .
Dans le cas de l'atome d'argent de masse , seul l'électron «célibataire» externe (dit de valence) est concerné par l'action du gradient de champ. Dans le
champ , la mesure algébrique suivant de son moment magnétique ne peut prendre que les deux valeurs avec A.m ( reste constant durant la traversée de l'aimant).
III.C.1) Comparer la valeur numérique du moment magnétique de l'atome d'argent et celle de l'application numérique de la question III.A.6. Faire un bref commentaire.
III.C.2) Montrer par un raisonnement simple à partir de que chaque atome du jet subit, pendant la traversée de ce champ inhomogène, une force
III.C.3) numérique: calculer la norme de l'accélération des atomes d'argent dans l'entrefer de l'aimant.
III.C.4) À partir de l'équation paramétrique de la trajectoire dans l'entrefer de l'aimant, soit et , déterminer l'équation cartésienne de la trajectoire et les déviations subies par les atomes à la sortie de l'entrefer.
III.C.5) L'écran d'observation (cible à condensation) est situé à la distance de la sortie de l'entrefer.
Déterminer la distance qui sépare sur l'écran les deux zones d'impact relatives aux deux valeurs de .
III.C.6) Application numérique : calculer . Cet écart peut-il être mis en évidence expérimentalement, compte tenu de la largeur du faisceau?

Partie IV - Résonance magnétique nucléaire

Un proton (noyau de l'atome d'hydrogène) possède également un moment cinétique de spin et un moment magnétique liés par
Le proton est plongé dans un champ magnétique uniforme, constant et colinéaire à l'axe .

IV.A -

IV.A.1) à«»é dérivée de son moment cinétique , son moment magnétique et le champ .
IV.A.2) En déduire l'équation différentielle que vérifie le vecteur .
IV.A.3) Montrer que la norme du vecteur demeure constante.
IV.A.4) Montrer que la composante sur l'axe du vecteur demeure constante.
IV.A.5) En déduire que l'angle demeure constant.
IV.A.6) Le vecteur tourne ainsi autour du champ en décrivant un cône d'angle constant : on dit que le proton possède un mouvement de précession autour de (figure 4). Déterminer la vitesse de rotation correspondante en fonction de et de .
En déduire la fréquence de précession correspondante et la mettre sous la forme . Quelle est la dimension de la constante ?
Figure 4
IV.A.7) Application numérique : calculer la constante et la fréquence de précession d'un proton dans un champ magnétique .
IV.B - Comme dans le cas de l'électron, dans un champ magnétique orienté suivant l'axe , la mesure algébrique suivant du spin du proton ne peut prendre que deux valeurs, .
IV.B.1) Exprimer l'énergie potentielle d'un proton plongé dans un champ magnétique en fonction de et .
IV.B.2) Application numérique : calculer l'énergie de «renversement» du spin d'un proton plongé dans un champ , lorsque passe de la valeur à la valeur . Calculer la fréquence correspondante (voir question III.B). Dans quelle domaine de fréquences cette valeur se place-t-elle ?
IV.C - Dans une expérience de résonance magnétique nucléaire ( ), les moments cinétiques des protons de l'échantillon de matière étudié ont un éàéé agissant au niveau d'un proton : ce champ est en réalité la somme du champ extérieur appliqué sur l'échantillon et du champ associé aux électrons avoisinant le proton (on suppose que ce champ est lui aussi pratiquement colinéaire à ). Un proton «libre» (c'est-à-dire idéalement isolé de son environnement) aurait un mouvement de précession à la fréquence et cette fréquence est calculable directement pour donné.
L'objet d'une expérience de est donc la détermination de l'écart de fréquences .
IV.C.1) Quel est l'intérêt de cette mesure ?
IV.C.2) Pour permettre la mesure de la fréquence , on applique à l'échantillon de matière, en plus du champ , un champ magnétique (on a ainsi ) de faible amplitude, oscillant à une fréquence que l'on peut faire varier. Recopier la figure 4 et y représenter le couple exercé par le champ sur le moment magnétique du proton.
IV.C.3) Que se passe-t-il lorsque la fréquence passe par la valeur ?
IV.C.4) Un instrument de mesure comporte les éléments suivants :
  • Un électro-aimant (ou un aimant) et une bobine produisent le champ magnétique , homogène dans toute la zone de l'échantillon explorée ; le générateur alimentant la bobine permet de faire varier de manière continue la valeur du champ.
  • Deux bobines entourent l'échantillon à étudier :
  • L'une est reliée à un générateur de tension sinusoïdale et crée le champ
  • L'autre, dont l'axe est normal à et , est reliée à un enregistreur qui mesure le courant induit dans la bobine à la résonance. Faire un schéma de principe de ce détecteur.
    IV.C.5) Application numérique : calculer l'ordre de grandeur de l'intensité ( ) du champ associé aux électrons avoisinant le proton pour un écart de fréquences lorsque l'échantillon de matière est placé dans le champ .

    IV.C.6) Le spectre de du benzène obtenu à l'enregistreur est simple. Donner l'allure de celui-ci en fonction de la fréquence (en complétant la figure 5 sur la copie).
    IV.C.7) Connaissez-vous les applications de la ?
Centrale Physique 1 TSI 2004 - Version Web LaTeX | WikiPrépa | WikiPrépa